FLUID MECHANICS LAB

Course Code	19CE3351	Year	II	Semester	I
Course Category	Program Core	Branch	CE	Course Type	Lab
Credits	1.5	L-T-P	0-0-3	Prerequisites	Physics and Mathematics
Continuous Internal Evaluation:	25	Semester End Evaluation:	50	Total Marks:	75

	Course Outcomes								
Upon s	Upon successful completion of the course, the student will be able to								
CO1	Determine the discharge through pipes by using venturi meter and orifice meter								
	Determine the discharge from tanks by using small orifice at constant head and								
	mouth piece at varying head								
CO2	Understand the Bernoulli's equation and its application and energy dissipation in								
	hydraulic jump								
CO3	Calculate loss of head in pipes due to friction and minor energy losses								
CO4	Gain knowledge about the efficiency of the turbines								
CO5	Gain knowledge about the efficiency of the pumps								

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1				3	3				2				2	2
CO2				3	3				2				2	2
CO3				3	3				2				2	2
CO4				3	3				2				2	2
CO5				3	3				2				2	2

Syllabus						
Unit						
No.		CO				
I	 Calibration of Venturi-meter & Orifice meter 					
	2. Determination of Coefficient of discharge for a small orifice by a constant head method	CO1				
	3. Determination of Coefficient of discharge for a mouth piece by variable head method					
II	4. Calibration of Triangular Notch /Rectangular Notch					
	5. Verification of Bernoulli's equation.	CO2				
	6. Study of Hydraulic jump					
	7. Determination of coefficient of discharge for Rectangular Weir					
III	8. Determination of Coefficient of loss of head in a sudden contraction					
	and friction factor.	CO3				
IV	9. Demo on performance test on Pelton wheel turbine					
	10. Demo on performance test on Francis turbine.	CO4				

1	V	11. Study of efficiency test on centrifugal pump.	
		12. Study of efficiency test on reciprocating pump.	CO5

Standards:-

- 1. To determine the coefficient of discharge of Venturi-meter and Orifice-meter. (IS 14615 (Part 1): 1999 (2004), ISO 5167-1: 1991 Measurement of Fluid Flow by Means of Pressure Differential Devices, Part 1: Orifice Plates, Nozzles and Venturi Tubes Inserted in Circular cross-section conduits running full)
- 2. To determine the coefficient of discharge of mouthpiece and small orifice by constant head and falling head methods. (IS 14615 (Part 1): 1999 (2004), ISO 5167-1: 1991 Measurement of Fluid Flow by Means of Pressure Differential Devices, Part 1: Orifice Plates, Nozzles and Venturi Tubes Inserted in Circular cross-section conduits running full)
- 3. To determine the coefficient of discharge of V-notch (triangular notch) & rectangular notch.(IS 9108: 1979 (2003) Liquid Flow Measurement in Open Channels using Thin Plate Weirs) (IS 13083: 1991(2003), ISO 4377: 1990- Liquid Flow Measurement in Open Channels Flat-V Weirs)
- 4. To compute the friction factor using Darcy-Weisbach Equation for pipes of different diameters. (IS 2595 (Part I): 1965 (Reaffirmed 2003) Head loss in Straight Pipes due to frictional resistance.
- 5. To study the performance characteristics of Pelton wheel turbine. (IS 12800 (Part 3): 1991 (2003) Guidelines for Selection of Hydraulic Turbine, Preliminary Dimensioning and Layout of Surface Hydroelectric Powerhouses, Part 3 Small, Mini And Micro Hydroelectric Power Houses)
- 6. To study the performance characteristics of the Francis turbine. (IS 12800 (Part 3): 1991 (2003) Guidelines for Selection of Hydraulic Turbine, Preliminary Dimensioning and Layout of Surface Hydroelectric Powerhouses, Part 3 Small, Mini And Micro Hydroelectric Power Houses)
- To study the working principles of a centrifugal pump. (IS 9137: 1978 (1993) Code for Acceptance Tests for Centrifugal, Mixed Flow and Axial Pumps Class C)
 ISO 9905: 1994 Technical specifications for centrifugal pumps Class I
 Other codes: IS 9118: 1979 (2001) Method for Measurement of Pressure by means of

Learning Resources

Laboratory Manuals

Manometers

- 1. Laboratory Manuals available in FM Laboratory.
- 2. Sarbjit Singh, Experiments in Fluid Mechanics, Prentice Hall of India Pvt. Ltd, Learning Private Limited, Delhi, 2012.
- 3. V.P. Gupta J. Chadra and K.S. Gupta, Laboratory Manual of Fluid Mechanics and Machines, CBS Publishers and Distributors, New Delhi, 2006.